
Fields and Forces: Summary Sheet

An electric field is a region where a charged particle experiences a force; similarly a gravitational field is a region where a particle with mass experiences a force.

Radial and Uniform Fields

• Lines of equipotential are where the potential difference is the same in an electric field. In a uniform field the distance between lines of equipotential should be regular, so half way across the plate separation there will be half the voltage.

	Electric Fields	Gravitational Fields
Force in a Radial Field	$F = \frac{kQ_1Q_2}{r^2}$ $k = \frac{1}{4\pi\varepsilon_0}$	$F = \frac{Gm_1m_2}{r^2}$
Force in a Uniform Field	F = EQ where $E = \frac{V}{d}$	F = mg Although the field of the Earth is not uniform, the curvature is so slight we model it as being so.
Field Strength	E measured in Vm ⁻¹ or NC ⁻¹	g in ms ⁻² or Nkg ⁻¹
Nature	Can be attractive or repulsive.	Always attractive (although there may be such thing as anti-mass as yet undiscovered)
Shieldin g	Can be shielded against (for example Faraday Cage).	Cannot be shielded against.

Comparing Electric and Gravitational Fields

Voltage and Energy

- A Volt is defined as the energy required to move one Coulomb of charge. Thus E = QV
- An electron volt is often a more convenient (although non-SI) way of measuring energy, it deals with charge in terms of multiples of *e*. Therefore one electron volt (eV) is 1 Joule × *e*.