Core 2 Revision

Algebra and Functions

- If f(p) = 0 then f(x p) is a factor of f(x).
- Long division with algebra...

Sine and Cosine

- $\bullet \quad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- $\bullet \quad c^2 = a^2 + b^2 2ab\cos C$
- $area = \frac{1}{2}ab\sin C$

Exponentials and Logarithms

- $\log_a n = x \rightarrow a^x = n$
- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log xy = \log x + \log y$
- $\log(\frac{x}{y}) = \log x \log y$
- $\bullet \quad \log(x)^k = k \log x$
- $\bullet \quad \log_a x = \frac{\log_b x}{\log_b a}$

Co-ordinate Geometry

- Mid point of a line = (\bar{x}, \bar{y})
- Length of a line = $\sqrt{\Delta x^2 + \Delta y^2}$
- A circle of centre (a, b) has formula $r^2 = (x-a)^2 + (y-b)^2$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + b^n$$
where $n \in \mathbb{N}$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r}$$
where $|x| < 1, n \in R$

Radian Measure

- $1 radian = \frac{180}{\pi}$
- $360^{\circ} = 2\pi^{\circ}$
- $arclength = \theta r$

• $area \sec tor = \frac{1}{2}r^2\theta$

• $areasegment = \frac{1}{2}r^2(\theta - \sin \theta)$

Geometric Sequences

- $u_n = ar^{n-1}$
- $S_{\infty} = \frac{a}{1-r}$ where $|\mathbf{r}| < 1$

Trigonometric Functions & Identities

- Working anti-clockwise from 0 t 360° All Students Take Cannabis shows where functions are positive.
- $\sin(180 \theta) = \sin \theta$
- $\cos(180 \theta) = -\cos\theta$
- $\tan 45 = 1$, $\sin 30 = 0.5$, $\cos 60 = 0.5$ etc Graphs: sin starts at the origin, cos starts at the max, range is -1 to 1, period is 360. For tan period is 180 and range is ∞
- $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- $\sin^2 \theta + \cos^2 \theta = 1$
- With sin; $\theta = \theta + n360$; $(180 \theta) + n360$
- With \cos ; $\theta = \theta + n360$; $(360 \theta) + n360$
- With tan; $\theta = \theta + n180$

Differentiation

- Stationary points are where the gradient of the curve is 0.
- dy / dx will give stationary points. (solve $f'(\underline{x}) = 0$ then sub. in f(x).
- *if f*''(x) > 0 then min point; if < 0 then max point; if = 0 then either or inflexion.

Integration

- Definite integration has limits, solve then sub limits in and subtract.
 Integrating a range gives the area below it.
- Trapezium rule allows estimation of areas under curves.