
Computing Revision Page 1 of 29

Paul Nicholls 13P Computing

A2 Computing Revision

Data Representation .. 3
Number Bases.. 3

Comparing the Bases... 3
Converting Between Bases.. 4
Negative Binary... 4
Binary Sums .. 5
Binary Fractions .. 5

Fixed Point... 5
Floating Point .. 6
Normalisation .. 6

Machine Level ... 7
The Processor .. 7

The Fetch-Execute Cycle .. 7
Structure of the Processor ... 8
Interrupt Handling ... 9
Processor Performance.. 10

Instructions in the Processor.. 11
Machine Code ... 11
Assembly Language .. 11
Instructions.. 12

Data Transfer ... 12
Arithmetic .. 12
Logical ... 12
Shifts.. 13
Branching and Comparing ... 13
Example… ... 13

Operands and Addressing.. 14
Operating System Level... 15

Concepts... 15
Role of the OS... 15
Processes and Threads... 15
Resource Scheduling ... 16
Memory Management ... 16

Address Assignment .. 16
Virtual Memory ... 17

Dynamically Linked Libraries... 17
File Management... 17

File Management Systems ... 17
I/O Management .. 18
Buffering.. 18

Classification ... 19
Interface... 19

Command Line Interface ... 19
Job Control Language.. 19
Graphical User Interfaces .. 20

Modes of Operation... 20
Network Concepts.. 21

Networking Methods .. 21
Terminology.. 21
Modes of Operation... 21
Wide Area Connection Methods ... 24

Computing Revision Page 2 of 29

Paul Nicholls 13P Computing

Protocols.. 24
TCP/IP Suite .. 24

Communication Media.. 25
Wired ... 25
Wireless ... 25

Network Topologies.. 26
Implementations.. 26

Server Vs Peer to Peer... 26
The Internet ... 26

Programming Concepts... 27

Database Concepts... 28

Systems Development .. 29

Computing Revision Page 3 of 29

Paul Nicholls 13P Computing

Data Representation

Number Bases
You might want to see http://saps2.mine.nu/school/ASA2/Computing/Numberbases.ppt for
an interactive PowerPoint on number bases.

Comparing the Bases
Denary – or base 10 – is the system we use naturally, we have 10 different digits from 0 to
9. Each digit in a denary number has a place value, calculated in powers of ten from the
right hand side.

104

10,000
103

1,000
102

100
101

10
100

1
5 2 4 5 1

For example, the number 52,451 can be expressed as:

= (5 × 10000) + (2 × 1000) + (4 × 100) + (5 × 10) + (1 × 1
= 52,451

Other number bases work in exactly the same way, except rather than having powers of ten;
we have powers of different numbers. In binary we have powers of two, and are restricted
to two digits, 1 and 0.

27

128
26

64
25

32
24

16
23

8
22

4
21

2
20

1
1 1 0 0 1 1 0 1

For example, the number 110011012 can be evaluated in denary using the place value idea
in the same way as for a denary number:
 = (1 × 128) + (1 × 64) + (0 × 32) + (0 × 16) + (1 × 8) + (1 × 4) + (0 × 2) + (1 × 1)
 = 205

In hexadecimal, we use base 16 – with place value incrementing in powers of 16, and 16
possible digits. Since we have no more digits after 9, we use the letters A-F instead,
whereby A is the digit which comes after 9, B is the digit which comes after A, etc.

104

65,536
103

4,096
162

256
161

16
160

1
0 0 0 F 6

Again, the number F616 can be evaluated in denary using the idea of place value:
 = (F × 16) + (6 × 1)
 = (15 × 16) + (6 × 1)
 = 246

The computer uses binary because it models the behaviour of a switch, it is either on or off,
and the processor is only able to manipulate binary numbers. Hex is used because it is a

Computing Revision Page 4 of 29

Paul Nicholls 13P Computing

very efficient system of storing large numbers, consider the number 255, this requires eight
bits to store in binary (1111 1111), three to store in denary (255), but only two in hex (FF).

Converting Between Bases
You can use the place value system described in the previous section to convert numbers
from any number base back into denary, and to convert from denary into other number
bases there is a reverse process to use:

For example, to convert the number 176 into binary:

 176 ÷ 27 = 176 ÷ 128 = 1 remainder 48

48 ÷ 26 = 48 ÷ 64 = 0 remainder 48
48 ÷ 25 = 48 ÷ 32 = 1 remainder 16
16 ÷ 24 = 16 ÷ 16 = 1 remainder 0
0 ÷ 23 = 0 ÷ 8 = 0 remainder 0
0 ÷ 22 = 0 ÷ 4 = 0 remainder 0
0 ÷ 21 = 0 ÷ 2 = 0 remainder 0
0 ÷ 20 = 0 ÷ 1 = 0 remainder 0

The binary number is the whole part answers of the modular division.
In this case 10110000

Whilst you can apply this method to any number base, including hexadecimal, it is usually
easier to convert from denary to hexadecimal using binary as a go-between. Since the
conversion from binary to hexadecimal is much easier.

To now convert our 10110000 into hexadecimal, we just split it into blocks of four bits
(known as a nibble) and convert these into hex digits. So 1011 becomes (8 + 2 + 1 = 11 =
B) B, and 0000 is of course 0. So in hexadecimal 176 is equal to B0.

Negative Binary
To represent a binary number as being negative, we use a system knows as “two’s
compliment”. This can be thought of as like a car’s odometer, if the car drives a mile
forwards, the odometer reads 000001, however, if it were to be forced back a mile, it would
read 999999, which is like -1 mile. A negative binary number will always start with a 1 –
this is known as the sign bit.

To convert a number to its two’s compliment, starting from the left we invert all the bits up
to and not including the last 1. So, for example,

To convert a two’s compliment number back to denary, consider the place value of the first
bit to no longer be 128, but negative 128. So in our above example:

 = -128 + 64 + 8 + 4 + 1
 = -51

 - 0 0 1 1 0 0 1 1
= 1 1 0 0 1 1 0 1

Computing Revision Page 5 of 29

Paul Nicholls 13P Computing

Binary Sums
You can add binary numbers in just the same way you add denary numbers. Remembering
the simple rules that 1 + 1 = 10, 1 + 0 = 1 and 1 + 1 + 1 = 11.

For example, 10110011 + 00111010 = 11101101

To do binary subtraction, we have to convert the number to be subtracted to its two’s
compliment form, and then treat the operation as an addition. This may seem obscure, but
the same thing is true in denary, for example: 5 – 3 = 5 + -3

Binary Fractions

Fixed Point
Just as our place value scale continues indefinitely to give increasing powers of the base
number, the scale continues in the opposite direction with negative powers. These allow us
to have fractions.

103

1,000
102

100
101

10
100

1
.
.

10-1

1/10
10-2

1/100
10-3

1/1000
0 1 2 4 . 2 5 0

In denary, we can consider 124.25 on the place value scale with the .25 representing two
tenths and 5 hundredths, and the same is true of binary fractions except in base two.

23

8
22

4
21

2
20

1
.
.

2-1

1/2
2-2

1/4
2-3

1/8
0 1 0 1 . 1 0 1

Here, we can show that 0101.101 = 4 + 1 + 2

1 + 8
1 = 5 8

5 = 5.625

With fixed point notation the position of the decimal point is fixed at a given bit number. In
the example above there are four bits before the point, and three after. This is reasonably to
work with, we can quickly calculate the fractions, however the downside of fixed point
notation is that to store a number such as 0.00000000000001, we require a great deal of
storage bits, just to store a single bit of data. The way around this is with floating point
notation.

 1 0 1 1 0 0 1 1
+ 0 0 1 1 1 0 1 0
 1 1 1 0 1 1 0 1
 1 1 1

Computing Revision Page 6 of 29

Paul Nicholls 13P Computing

Floating Point
Floating point numbers are the equivalent of scientific form in binary. Just as we can
express 1,200,000,000,000 as 0.12 × 1013, we can express binary numbers as multiples of a
power of two.

0.12 × 1013

In our denary example of 0.12 × 1013, 0.12 is the mantissa and 13 is the exponent. The
mantissa is the coefficient, the mantissa holds the digits and the exponent defines where to
place the decimal point.

0100 1100 1100 0100

With a binary floating point fraction, it might be that a 16bit word is made up of a 10 bit
mantissa and a 6 bit exponent. Just as with a normal binary number, the first bit (most
significant bit) of each part will indicate whether that part is positive or negative.

To evaluate our example of 0100 1100 1100 0100 there are a number of steps to follow.

 Firstly, we identify 0100110011 as being our mantissa, which is positive since it
starts in a zero. Similarly 000100 is our exponent, which is also positive. The
decimal point can be located after the first (sign) bit.

= 0.100110011 × 2000100

 Now we evaluate the exponent in denary. 000100 = 4.
= 0.100110011 × 24

 Next we move the decimal point exponent times to the right of its current location.
If the exponent is negative we move to the left, not the right.

= 01001.10011

 Lastly we can now convert this number to denary just as we did fixed point
numbers.

= 32
1

16
1

2
18 +++

= 8.59375

Normalisation
Normalisation is designed to give maximum precision for a given number of bits. A
number in floating point notation could be written in many ways, for example the number
1200 could be written as 1200, 1.2 × 103, 12 × 102, etc. In normalised form however there
is only one correct way to represent any given number – and that is so that the mantissa lies
between ½ and 1 (or -½ and -1 in the case of negative mantissas). In binary this is achieved
by altering the exponent such that the mantissa starts with “01” if it is positive or “10” if it
is negative (i.e. we have removed all leading zeros.)

Mantissa Exponent

ExponentMantissa

Computing Revision Page 7 of 29

Paul Nicholls 13P Computing

Start

Any
instructions to

execute?

Fetch Next
Instruction

Decode
Instruction

Decode
Instruction

Execute
Instruction

Any interrupts
to process?

Call Interrupt
Handling Program

No

Yes

Yes

No

Machine Level

The Processor

The Fetch-Execute Cycle
The processor processes instructions; these instructions are dealt with in the manner
described by the Fetch-Execute cycle:

Note: An interrupt is a signal generated by a device when it requires the attention of the
processor. The following types of interrupt may occur:

 Interrupts by running process. This might be, for example, that the process needs to
perform I/O operations and therefore pause execution until this is complete.

 I/O Interrupts. These are generated by I/O hardware and may be sent when a
transfer is complete, or if an error occurred in transfer.

 Timer Interrupts. These interrupt the current job to perform regular tasks which
must be performed at set intervals. (For example, in a multi-user OS to allow the
other users’ jobs to be processed for a period).

 Program Check Interrupts. These are caused by errors in the program.
 Machine Check Interrupts. These are caused by malfunctioning hardware.

Computing Revision Page 8 of 29

Paul Nicholls 13P Computing

Structure of the Processor
A processor will typically contain these three key components:

 The Arithmetic-Logic Unit (ALU). This is where (as the name indicates) all
arithmetic and logic operations are carried out in the processor.

 The Control Unit. This co-ordinates all the activities taking place in the CPU,
memory and other peripheral devices via the use of control signals. The control unit
is where instructions are decoded and executed; it may call upon the ALU or other
components to aid in the execution of instructions.

 The System Clock. This sends out a sequence of timing pulses or signals, which are
used to step the control unit through its operations.

Additionally, the processor contains a number of registers; these are very fast storage
locations inside the processor that are used for temporary storage of binary values. The
processor contains a number of special purpose registers, which have dedicated uses, and
general purpose registers which may be used for arithmetic function and are a sort of
“working area”.

There are all kinds of special purpose registers, but some of the most common are details
below:

 The Program Counter (PC). This holds the address of the next instruction to be
executed. Each instruction the processor is going to perform is stored in a memory
address; this register is automatically incremented so that it always holds the
memory address of the next instruction.

 The Current Instruction Register (CIR, or IR). This contains the operator and the
operand of the current instruction. (Where in the example instruction MOVE
80,#13 “MOVE” is the operator, and “80” and “#13” are the operands.).

 The Memory Address Register (MAR). This holds the address of a memory
location from which data will be read from or written to. Data might be a variable as
part of a program, or an instruction for the processor to execute.

 The Memory Data Register (MDR, or MBR). This is used to store data which has
been read from or is ready to write to memory. All transfers from memory to CPU
go through this buffer.

 The Status Register (SR). This contains status bits which reflect on the results of
an instruction. For example, if there is an error in the operation (such as an
overflow) this will be recorded in the status register. The Status Registers also store
data about interrupts.

We can now express the fetch execute cycle in terms of the processor’s registers:

1. The address of the next instruction is copied from the PC to the MAR.
2. The instruction at that address is loaded into the MDR. Simultaneously the PC is

incremented for the next instruction.
3. The MDR is copied to the CIR.
4. The contents of the CIR are decoded.
5. The decoded contents are executed.

Computing Revision Page 9 of 29

Paul Nicholls 13P Computing

Interrupt Handling
At the end of each Fetch-Execute cycle, the contents of the interrupt registers are checked.
Should there be an interrupt; the following steps will typically be taken:

1. The contents of the PC and other registers will be stored safely in a stack.
2. The highest priority interrupt is identified. Interrupts with a lower priority are

disabled.
3. The source of the interrupt is identified.
4. The start address of the interrupt handler is loaded into the PC.
5. The interrupt handler is executed.
6. Interrupts are enabled again, and the cycle will restart with any further interrupts.
7. The PC and other registers are “popped” from the stack and restored.
8. The user’s program resumes with the next step in its cycle.

Interrupts have different priorities; this is so if two are received simultaneously the
computer knows which the more important one to execute first is. Typically there are four
levels of priority, which are (in descending order) Hardware Failure, Program Interrupts,
Timer Interrupts, I/O Interrupts).

When dealing with an interrupt, the computer has to know which interrupt handler to call
for which interrupt. One method of doing this is known as the vectored interrupt
mechanism. In this approach a complete list of interrupts and the memory address of their
handler is stored in a table called the interrupt vector table.

The interrupt supplies an offset number, which identifies the interrupt uniquely. This offset
is added to a base term, and the resultant number is the memory address of a pointer to the
memory location of the handler routine. This is explained in the example below:

Memory Location Data
5001 6002
5002 6280
5003 7580
…
6002 ;Interrupt Handler for 001
6280 ;Interrupt Handler for 002
7580 ;Interrupt Handler for 003

If the interrupt 002 is received, the base number 5000 is added to it, which allows the
processor to know that the handler can be found by opening the data stored at address 5002.
The address 5002 simply stores a pointer to another memory location, 6280, where the
actual handler routine begins.

The advantage of this approach is that each interrupt only needs to give the processor an
offset number, such as 002, and the processor can determine from that the correct memory
location to use. This is more efficient than the interrupt sending the full memory address
itself. This approach also allows the interrupt routines to be stored anywhere in the
memory, with the pointer table updated to reflect if a handler routine is moved.

The interrupt
vector table

Computing Revision Page 10 of 29

Paul Nicholls 13P Computing

Processor Performance
The traditional processor’s performance is affected by these four main components:

 Clock Speed

As previously mentioned the processor contains a timing device known as the clock.
This sends out signals at a given interval, and all processes within the computer will
start with one of these pulses. A process may take any amount of time to complete,
but it will only start on a pulse. It therefore makes sense that a processor with a
faster clock speed will perform faster, since more pulses will be sent out in the same
time frame. The clock speed is generally quoted in factors of Hertz, with modern
processors typically Gigahertz.

 Word Size

The word size of a computer is the number of bits it can process at a time. Bits are
grouped into words, the length of a word varies but it is typically, 8, 16, 32, 64 or
128 bits. Obviously if the processor is able to deal with more bits at a time then it is
going to perform better. Typically home computers are 32bit, but 64bit technology
is becoming widespread too.

 Bus Width

The addresses of data, and the data itself, is transmitted along buses inside the
computer. The width of the bus is the number of bits it can store. A wider data bus
will allow more data to be sent at a time, and therefore the processor will perform
more efficiently. A wider address bus will increase the number of memory
addresses a computer may use. For example an 8 bit bus will only allow a value
between 0 and 255 to be transmitted at a time.

 Architecture

The architecture of a processor will affect its performance, a better designed
processor will perform better than a different processor.

Computing Revision Page 11 of 29

Paul Nicholls 13P Computing

Instructions in the Processor

Machine Code
The processor obeys instructions in machine code. Machine instructions are binary codes;
different processors have different codes for different instructions depending on their
application. The complete list of possible codes and their corresponding operations is
known as the instruction set.

Generally there are four types of instructions:

 Data Transfer. For moving information from one place to another.
 Arithmetic. For mathematical operations.
 Logical. For logical expressions and operations.
 Test and Branch. To create conditional or unconditional code segments.

Writing in machine code is a very tedious process, with the programmer having to work
purely in binary patterns. Because of this we tend to use assembly language, which uses
mnemonics instead of binary codes to represent operations. The assembler then translates
the assembly language to machine code.

Assembly Language
Whilst assembly language is fairly basic to code with in comparison to a high level
language such as Delphi or Visual Basic, it still has its uses. Mostly when the programmer
needs to access the processor directly, either to access registers or write to exact memory
locations. Device drivers for example are usually coded in assembly, the other use of
assembly is where the code must execute as efficiently as possible with minimal storage
space (such as the bootstrap loader for an OS).

Commands in assembly consist of an operator (or op code) and then a number of operands.
Some examples are shown below:

 RTS (Return from a subroutine)
 LDA #20 (Load the number 20 into the accumulator)
 MVE #20, R1 (Move the number 20 into the register R1)

In these examples, the three letter mnemonic is the op code, and any values beyond it are
operands. Note that RTS is one of few commands to have no operand.

Computing Revision Page 12 of 29

Paul Nicholls 13P Computing

Instructions

Data Transfer
Data transfer instructions involve moving data from one place to another.

 MOVE #30, R1 ;Move the number 30 into register 1
 LDA R1 ;Load register 1 into the accumulator
 STA R2 ;Store the accumulator in register 2

Arithmetic
Many processors only support additional and subtraction as basic operations, whilst others
include a more comprehensive list.

 ADC #2 ;Add 2 to the accumulator
 SBC #2 ;Subtract 2 from the accumulator
 INC ;Increment the accumulator by 1
 ABS R1 ;Absolute (positive) value of register 1

Logical
Logical operations generally take place on bit patterns in the processor. We tend to use
these four main commands:

 NOT: This inverts the bit pattern, and can be used as part of an operation to find the
two’s compliment of a number. Returns the inverse bit pattern.

 OR: We can use this to set bits to 1 within a number, without affecting the other
bits. Returns “1” bits which are present in either of the two inputs.

 AND: We can use this to mask parts of a binary number out. Returns “1” bits which

are present in both input patterns.

 EOR (or XOR): We can use this to compare two binary patterns. Returns a “1”

where bits in the inputs do not match.

1001
EOR 0101

1100

1001
AND 1000

1100

1001
OR 1101

1100

0111 NOT 1000

Computing Revision Page 13 of 29

Paul Nicholls 13P Computing

Shifts
Shifting operations may alter the location of bits within the number. These shifts tend to be
used to examine individual bits within a pattern by moving them into the carry bit position
and examining that.

Shifts are logical, arithmetic or circular (rotating). In a logical shift (LSR), bits are moved
with no regards as to the previous value of the number, for example after shifting a negative
number on bit to the right, a zero is now prefixed to the number, and the number now reads
as positive – when in fact it is negative but shifted to the right. The solution to this is an
arithmetic shift (ASR), which would in this case prefix a one, to ensure the shifted number
is also negative.

In a rotating shift (ROR), the number chomped from the right end of the pattern goes into
the carry bit position, and then on the next step of the shift, it is put back at the left end, so
that after n number of steps where n is the number of bits in the pattern, the number will be
shifted back to its original position.

Branching and Comparing

 Compare (CMP). This can be used to compare two values in the processor; they may
be registers, memory locations or fixed values. The result of the comparison will be
stored in a status bit ready for use at the next stage of the program.

 Branch If Equal (BEQ) and Branch If Not Equal (BNE) are used to alter the path of
executing within a program given the results of a comparison. The operand of this
command will be a label or line number to branch (jump) to.

 Jump (JMP) will cause an unconditional jump to a defined label or line in the code
given in the operand. The same is true of JSR which will jump to a defined
subroutine in the code.

Example…
;Program to calculate multiplication
;Example values of 6x8

MOV #6, X ;Move 6 into register X
MOV #8, Y ;Move 8 into register Y

Loop:
LDA X ;Load X into the accumulator
ADC X ;Add X to the accumulator
STA X ;Store content of accumulator in X

LDA Y ;Load Y into the accumulator
SBC #1 ;Subtract accumulator by 1
STA Y ;Store accumulator in Y

CMP Y, #0 ;Compare Y, our counter, with zero

BNE Loop ;Branch to “Loop” if not equal

Computing Revision Page 14 of 29

Paul Nicholls 13P Computing

Operands and Addressing
When specifying operands there are different sources from which data might be coming, as
well as numerous formats that data may take. For example, if we just had an operand of
“10”, does this mean 10 in binary, 10 in denary, 10 in hexadecimal, the memory location
10, or something memory location 10 points to? To get around this, we have different
addressing modes, and we show these using various special characters, as described below:

LDA #&10 Immediate Addressing. Loads the value “10” in

hexadecimal.
LDA #10b Immediate Addressing. Loads the value “10” in binary
LDA #10 Immediate Addressing. Loads the value “10” in denary
LDA 10 Direct Addressing. Loads the value of memory location

number 10
LDA (10) Indirect Addressing. Loads the memory location which is

pointed to by memory location number 10
LDA #5,#100 Base Register Addressing. Loads the memory location

formed by adding the first operand to the second (base)
operand, so 105. This might be done by means of the index
register, X, which is known as Indexed Addressing.

JMP +10 Relative Addressing. Jumps to the instruction located 10
bytes on from the current instruction.

Computing Revision Page 15 of 29

Paul Nicholls 13P Computing

User

Applications

Operating System

Hardware

Programs Processes Threads
One process may
spawn many
threads.

Operating System Level

Concepts

Role of the OS

The operating system is a set of
programs which manages the
operation of a computer. It sits
between the hardware and the
user to provide an interface by
which to control processes and
devices on the computer.

The operating system has four
primary functions:

 Process Management
 Memory Management
 I/O Control
 File Management

Processes and Threads
A process is a program in execution. The distinction is that a program is a static bit of
code; the process is the instance of that program being executed. For example, if the same
program is running twice, the program will be loaded into memory once, but it will have
two processes - one for each instance of the program.

The operating system maintains information about all the processes in the process control
block (PCB). The contains information such as the process’s unique ID, the current state of
the process (explained in a moment), the program counter, pointers to allocated memory
space and resources, CPU time used so far, and estimated time to completion.

The process can be in any one of three states, running (if it is currently using the processor),
runnable (if it is ready to be executed and is just waiting for the processor to become
available), or suspended if it is waiting for I/O and could not execute even if the processor
was free.

Threads are paths of execution within a process. For example, the same code may have
two sections being executed simultaneously. One process may have many threads, which
are stored in the thread control block (TCB) which stores information very much like the
PCB. An operating system which allows multithreading (i.e. more than one thread-per-
process) allows the programmer to create programs which can have two or more parts
executing concurrently. This is more efficient than spawning a new process because threads
share address space and therefore require less resources than new processes.

One program
may be running
as many
processes.

Computing Revision Page 16 of 29

Paul Nicholls 13P Computing

Resource Scheduling
 Priorities are assigned to jobs (processes) by both the user and by the operating system.
This is the job of the scheduler, which obeys a scheduling policy.

The scheduling policy will aim to:

 Maximise the number of jobs being executing in the shortest possible time.
 Ensure all users receive an acceptable response time for their actions.
 Balance the use of resources.
 Ensuring all jobs, regardless of apparent priority, do get executed eventually.
 Enforce user preferences on job priorities.
 Not be so complicated the processor spends all its time deciding which job to

execute, rather than actually executing anything…
 Resolve conflicts between its criteria.
 Resolve deadlocks where two or more interdependent processes are left waiting for

the other to complete.

The scheduler will make its decisions based upon information such as what resources a
program needs, the urgency of the process, the time the process has been waiting and how
much time is needed to complete the process.

Three possible strategies a policy may take are:

 Shortest Job First.
 Shortest time remaining first.
 Round Robin. (FIFO within a limited time slice per user).

Memory Management

Address Assignment
The memory manager is responsible for allocating physical memory to different processes.
A process cannot function (or indeed exist) without having some memory assigned to it. A
good memory manager will aim to allocate space in such a way that as many processes are
able to execute concurrently as possible, whilst protecting processes’ memory space (or
indeed un-protecting it to allow sharing of resources where required). All of this should be
clear to the programmer and provide a satisfactory level of performance. Generally memory
may be assigned to processes either statically (with an absolute loader) or dynamically
(with a relocating loader).

In static assignment, the program is loaded into a fixed area of main memory, and the
memory addresses used are “hard coded” into the compiled machine code. The code will
therefore only execute if the program is always loaded into the same memory space.

With dynamic or relocating assignment, the program is loaded into any area of main
memory, and all addresses within the code are relative to a base register. For example the
code might speak of memory address “200”, if the base register is “100000”, then the
address which will actually be used is 100200, however if we change the base register to
“100500” the code will not need changing, but the new address used will be “100700”. This
mapping is controlled by the memory management unit (MMU).

Computing Revision Page 17 of 29

Paul Nicholls 13P Computing

Virtual Memory
Virtual memory is where the hard disk is used to store data which would otherwise be
stored in main memory on a temporary basis.

The main memory is divided into blocks, which are occupied by “pages” of a program
(segments of its code and data). What happens is that pages of programs which are not
currently needed are “swapped” out to the hard disk temporarily, to make way for other
pages in the main memory which are currently needed. Each process will have a page
management table which shows where the pages are at that moment. The file which these
pages are put into on the hard disk is known as the pagefile.

Dynamically Linked Libraries
Libraries are not independent programs in themselves, but hold collections of routines used
within other programs. These DLLs might be provided by the operating system to access
some of its functions or the information it holds, or by software developers to reduce code
duplication between two programs with common traits between them.

The DLLs is linked from the developer’s source code, and accessed when the program is
run (not when it is compiled, the DLL does not become embedded within the application).
For example, Microsoft Office has lots of DLLs since it has a number of programs in its
suite which share the same functions and features.

File Management

File Management Systems
The file management system is the system which controls access to the storage devices.
Some typical examples are NTFS (Windows NT File System), FAT (File Allocation Table)
and EXT (extended File System). The file management system has four main functions:

 To allocate space on storage devices to data. Space is usually divided into slots or
blocks called allocation units. The system must also deallocate space when a file is
deleted.

 To track which allocation units store which files, since a file may be spread across
units.

 To control access rights and permissions.
 To map logical addresses to physical addresses.

The File System may allow the creation of logical drives (or partitions). This is shown in
the diagram below, where a computer showing two drives (C and D) has in fact one disk
which the file system has cut into virtual slices.

C: drive
60 GB

D: drive
20 GB

Disk 1
80 GB

Computing Revision Page 18 of 29

Paul Nicholls 13P Computing

I/O Management
The I/O bus allows communications with storage devices; each device on the bus has an
address, and via a series of interrupts knows when to send data. A device controller sits
between the storage device and the bus, to provide a generic interface for the hardware to
connect to. Software known as device drivers will allow the operating system to manage
the actions which must take place to correctly communicate with different storage devices.

Buffering
Data is always transferred from the storage device to the processor through a buffer. The
buffer is fixed at the size of an allocation unit, and so every time data is required an entire
allocation unit is sent to the buffer, then just the required data is read from the buffer.

Computing Revision Page 19 of 29

Paul Nicholls 13P Computing

Classification

Interface
The interface of an operating system is the way in which it can communicate with the user.
The interface may be command line, graphical or take the form of job control language.

Command Line Interface.

Here the user accesses the computer via a terminal which provides a text input and output
facility. A command line interpreter (CLI) is responsible for identifying the correct process
the user has requested.

In Windows, a command line interface will look something like:

However, in operating systems it will look different. For example in a Unix/Linux
system it might look like:

Job Control Language.

(JCL) In a JCL interface a user has no direct way of interacting with the computer; instead
they prepare a program using a series of instructions, and allow this program to be executed
with any results being prepared for viewing at a later date.

A JCL program will have to specify things such as:

 Who owns the job
 What priority the job has
 The names of any data files used.
 Action to take if the task does not execute properly
 The maximum resources to allocate to the job

 Command Prompt Character

Current Working Directory

Command Prompt Character

Current Working Directory

Current Computer Name

Current User Name

Computing Revision Page 20 of 29

Paul Nicholls 13P Computing

Graphical User Interfaces
A GUI allows the user to interact in more ways with the computer. This is often by use of a
WIMP (Windows, Icons, Mouse and Pointers) system which is more intuitive than a
command line system. GUIs do however use far more resources than a basic interface and
can be inefficient when it comes to repeating processes numerous times.

Modes of Operation

 Batch. This is where a job (often defined in JCL) runs from beginning to end
without direct user intervention.

 Interactive. This is where the user interacts directly with the system, entering
commands and data whilst the program executes.

 Real Time. This is where data is processed with minimal delay so the system can
respond instantly to changes in variables.

 Single User. The OS can only allow one user to be using the machine at a given
time.

 Single Process. The OS can only execute a single process at a time.
 Multi Programming. The OS appears to be able to process two or more programs

concurrently.
 Multi User. The OS allows two or more users to be communicating with the

computer simultaneously.
 Multi Tasking. The OS allows the user to be working on two or more (related) tasks

simultaneously, and allows these tasks to interact.
 Network. A computer which wishes to communicate with other computers must run

network software to enable such communication.

Computing Revision Page 21 of 29

Paul Nicholls 13P Computing

Network Concepts

Networking Methods

Terminology

 A Network is two or more computers sharing resources and services.
 A Local Area Network (LAN) is computers which are close together sharing

resources and services.
 A Wide Area Network (WAN) is computers which are geographically remote

sharing resources and services.

Modes of Operation

 Baseband is a system which carries one signal at a time down a cable. The presence
or absence of a signal in the cable counts as a binary 1 or 0. This system can operate
very quickly – but only operates over relatively short distances. Most LANs operate
in this mode.

 Broadband is a system which can carry multiple signals over one fixed carrier

wave. The signals 1 and 0 are sent as variations on the carrier wave. The bandwidth
of the line is shared by several “channels” of data. This system is generally used in
WANs.

 Synchronous data transmission is where timing signals are used to ensure both

ends of the transmission line know what data they are receiving when. This is as
opposed to start and stop bits. By removing the start and stop bit after each character
and just using them at the beginning and end of each block of data, faster
transmission speeds are possible. However, this is only reliable over relatively short
distances and therefore mainly used in LANs.

time

Volts

time

Volts 1 1 0 1 0 1

Computing Revision Page 22 of 29

Paul Nicholls 13P Computing

 Time Division Multiplexing is a method of combining several data streams into

one communication channel. This can save on the cost of communication channels
and increase efficiency.

With this method, the use of the high speed channel is split into time slots, each data
stream in then has a slot on the high speed channel, before handing over to the next
data stream, etc. For this to run effectively the speed of the high speed line must be
at least n times faster than one of the input data streams, where n is the number of
input steams.

 Circuit Switching is where a (single) physical pathway of cabling is established
between the sender and receiver for the duration of a data transfer. This is very
much like the plain old telephone system (POTS). A complex series of electric
switches at telephone exchanges ensures that the senders phone is physically
connected to the receivers phone – and so a physical pathway is formed.

As shown in the diagram below, when you dial a phone number, this corresponds to
the switches which are to be chosen. So in the example below, the caller dialled
528, to reach one of a possible 999 phones.

M
ul

tip
le

xe
r

D
em

ul
tip

le
xe

r

Single high speed channel

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Computing Revision Page 23 of 29

Paul Nicholls 13P Computing

 Packet Switching Systems (PPS) break down messages into packets (or

datagrams). These are fixed length blocks of information which are then all
transmitted individually through the network.

In a system such as TCP/IP, a large computer network directs packets around until
they reach their destination. They might not take the same route to reach their
destination (although in a virtual circuit, there is one dedicated “virtual” pathway
formed between source and destination).

The path a packet should take may be predetermined, as with a virtual circuit
system, the two computers arrange a route before beginning data transfer. However,
it may be that nodes in the network simply redirect the packet around until it
reaches the destination it is addressed to, this would be the case in a datagram
system.

Packet switching is used in the Internet, and it has many advantages over circuit
switching. Firstly it is a more efficient use of lines, and also it is less likely to be
affected by things like line failure and faults, since the packets are simply able to
use another route instead – with a multitude of different routes possible. Finally
security can be seen to be better in a PSS since the packets are sent via different
routes and interleaved with other information, which makes intercepting a whole
data block very difficult (unlike a circuit switching system where you would only
need to tap one line to listen in on all communications between sender and receiver).

 Asynchronous Transfer mode (ATM) this is a packet switching system which
employs virtual circuits to transfer multiple data channels over a single line, with
each channel able to dynamically set the bandwidth it requires. ATM is used over
digital lines, and can perform very high transmission rates with virtually no noise or
errors.

Node

Node

Node

Node

Node

Node

Node

Node

Node

Computing Revision Page 24 of 29

Paul Nicholls 13P Computing

Wide Area Connection Methods

 Dial Up uses a MODEM (MOulator DEModulator) to convert the computer’s
digital signal into an analogue one that can be sent down a normal phone line.

 ISDN (Integrated Services Digital Network) is a system of using the phone line

digitally to transmit internet and other services over a regular phone line at high
speed.

 Cable Television are often capable of connecting users to the internet by

transmitting data down their coaxial or fibre optic lines.

 ADSL (Asymmetric Digital Subscriber Line) is a technology which uses broadband
principles to allow multiple data channels to be modulated into one signal which
can be sent down a regular phone line at the same time as voice signals from a
phone line.

Protocols

A protocol is a predefined system of signals, codes and rules to be used for data transfer
between two systems. A standard protocol is one which conforms to a standard laid down
by an authority to ensure any computer operating with the protocol can communicate
correctly with all others on the same protocol.

TCP/IP Suite
TCP/IP is one of the most common standard protocol suites, and it is what is used on the
internet. It is called a protocol suite because technically it is a collection of many protocols
which work together.

The protocol suite operates on four distinct levels:

Application Layer This provides applications with access to the communications

environment. Example protocols on this level are HTTP
(Hypertext Transfer Protocol), Telnet, FTP (File Transfer
Protocol), SMTP (Simple Mail Transfer Protocol) and POP (Post
Office Protocol).

Transport Layer This is responsible for dividing the data from the application layer
into packets, ready for sending down the network. The protocols
acting on this layer are TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol).

Network Layer This layer is responsible for addressing, routing and sequencing
data. Protocols acting on this layer are IP (internet protocol) and
ARP (Address Resolution Protocol).

Data Link Layer This layer interfaces directly with the cable handling direct data
flow. It can support various connection types and network
topologies.

Computing Revision Page 25 of 29

Paul Nicholls 13P Computing

The TCP/IP system allows for what are known as sockets, this is a construct which allows
multiple processes to apparently use the network connection simultaneously without
interfering with each other. For example, a computer which runs as a web server will listen
on port 80 for incoming HTTP requests. The same computer might be listening on port 22
for SSH requests, and 11 for SMTP requests. The combination of port and IP address is
known as a socket. This is represented in the form [IP]:[Port], so I.e. 192.168.0.1:80 is the
computer known as 192.168.0.1 operating on port 80.

Communication Media

Wired
The type of cabling used can dramatically affect the performance of a network, as well as
this cabling must be selected that is suitable for the budget, network type and environment.

 Twisted Pair. This is used in the telephone network and many newer LANs. It can
come as STP (shielded twister pair) or UTP (unshielded, which is less bulky).

 Coaxial Cable. This is used in older LANs, as well as being used in aerials. It is
generally high quality and well insulated and can transmit data at high speeds.

 Fibre Optic Cable. Through this the principle of total internal reflection (TIR)
allows pulses of light, rather than voltage, to send a signal from source to
destination.

Coaxial Cables Twister Pair Cables Fibre Optic Cables

Wireless
Wireless networking may be used on both a local scale, say to provide access to the internal
all around a house, as well as on a heavy duty scale to transmit data across continents.

 Radio Waves. These are used in most localised wireless networks (WLANS) where
a typical range might be 50m, as well as in the distribution of the internet to remote
areas, where ranges might span as far as those of a radio station.

 Microwaves. These are used by mobile telephones and have a range of about 50km.
 Satellite. Data can be bounced around the word by communicating through a

geosynchronous satellite.

Computing Revision Page 26 of 29

Paul Nicholls 13P Computing

Network Topologies

Implementations

Server Vs Peer to Peer

The Internet

Computing Revision Page 27 of 29

Paul Nicholls 13P Computing

Programming Concepts

Computing Revision Page 28 of 29

Paul Nicholls 13P Computing

Database Concepts

Computing Revision Page 29 of 29

Paul Nicholls 13P Computing

Systems Development

